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STRESS WAVE PROPAGATION IN RECTANGULAR BARS

W. B. FrRASER
Department of Applied Mathematics, The University of Sydney, Australia

Abstract—The method of collocation is used to obtain dispersion curves for wave propagation in infinite
rectangular bars. It is found to give accurate results, over a limited range of wave numbers, for the first two
branches of the dispersion curves for the various modes of propagation. For the square bar the screw modes of
Kynch are found and the interaction between one of the screw modes and the longitudinal mode is investigated
in detail. Finally, these results are used to assess the accuracy of two recent approximate theories for waves in bars.

NOTATION
a semiwidth of rectangular section
b semidepth of rectangular section
¢ phase velocity
Cy = [(4+ 2p)/p}* velocity of dilational waves in an infinite medium
¢y ={u/p)* velocity of shear waves in an infinite medium
¢ ={E/p)* = ¢;{2(1 +v}}} the bar velocity
& Rayleigh wave velocity
E Young’s Modulus
Ape o Fy constant coeflicients in series solutions
i = J(-1
Jfs) Bessel's function of order n
Jus) = dJ,/ds
Jsel) = J farisin nf
isalB) = J (Br)sin nd
Jeala) = J (ar) cos n0
jeu B = J (Br)cos nd
k = w/c wave number
K = § (B2 — k2P *
t time
r0,z cylindrical polar coordinates
X ¥z cartesian coordinates
Uy, Ug, U, cylindrical polar components of displacement
by, Uy, Uz cartesian components of displacement
@ = k{c* /el —1)i*
B = k(e e~ 1)
At Lamé’s constants
v Poisson’s ratio
P density
Opps Orgo - - - cylindrical polar components of stress
GexrOxyr ..., 0 cartesian components of stress

7 max maximum stress (amplitude) in the bar
® = 2n X frequency

Note on the use of terms mode and branch

In this paper mode refers to the broad classification of the types of wave that propagate in rectangular bars,
and branch refers to a particular dispersion curve in the family of dispersion curves belonging to a given mode.

* In section 6, K and « are the adjustment parameters of Volterra and Medick respectively.
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Thus, the following letters are used to designate the various modes of wave propagation:

L longitudinal mode

T torsional mode

S, first screw mode

S, second screw mode

B, bending mode (about the x-axis)
B, bending mode (about the y-axis)

and when a particular branch is referred to a superscript will be added to the letter. For example T designates
the first (or fundamental) branch of the torsional mode.

1. INTRODUCTION

AN EXACT solution to the problem of elastic wave propagation in infinite bars is only
possible for bars of circular cross-section. For bars of noncircular cross-section a number
of approximate methods for finding dispersion relations have been developed, and a
review of these (up to 1960) is given by Green [1]. More recently Volterra [12] and
Medick [13, 14] have put forward approximate theories that are particularly appropriate
for bars of rectangular cross-section, and the results obtained in this paper will be used
to assess the accuracy of these two theories.

Here the method of collocation is used to obtain dispersion curves for waves in
rectangular bars. Exact solutions of the elastic wave equations in cylindrical polar
coordinates are made to satisfy the boundary conditions at a discrete set of points on the
boundary. This gives rise to a determinant, the zeros of which give points on the dispersion
curves. The first (and in some cases the second) branches of the dispersion curves for all
modes of wave propagation in square bars, and some rectangular bars, have been obtained
in this way. The method is unsatisfactory for obtaining the higher order branches, or the
low order branches at high frequencies; it is also unsatisfactory when the ratio of the
lengths of the sides of the section is large.

The results of three previous investigations are especially relevant to the present work.
Kynch [2] used the variational method to find approximate dispersion relations for
noncircular bars. He found that four modes of wave propagation are possible in a
rectangular bar: longitudinal, torsional and two bending modes. In a square bar he found
that owing to the additional symmetry of the cross-section two additional modes, which
he called screw modes, are possible; the longitudinal mode separates into a symmetrical
longitudinal and a screw mode, and the torsional mode separates into a torsional and a
second screw mode. On the basis of these results Kynch explained the experimental results
of Morse [3] for longitudinal waves in rectangular brass bars. Recently, Nigro [4] used
the variational method to obtain more accurate dispersion curves for rectangular bars.
Unfortunately, he failed to distinguish the screw from the longitudinal and torsional modes
in the square bar and his results must be reinterpreted. The collocation method leads us
naturally to the modes of wave propagation identified by Kynch, and dispersion curves
similar to the experimental curves of Morse are obtained. For the square bar our results
are in excellent agreement with those of Nigro (when the latter are reinterpreted).

This appears to be the first work in which collocation is used to obtain dispersion curves.
However, finding dispersion curves is essentially an eigenvalue problem and collocation
has been used previously by Fox, Henrici and Moler [5] to find the eigen-frequencies of an
L shaped membrane and by Conway and Leissa [6] and Conway and Farnham {7] to solve
problems of the buckling and vibration of plates. Although results are given here only for
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rectangular bars, the method can be applied to bars with other cross-sections such as con-
vex polygons and ellipses where the ratio of the major to the minor axis is not too large.

2. THE COLLOCATION METHOD

We take the general solutions of the elastic wave equations in cylindrical polar
coordinates (r, 0, z) given by Kynch and Green [8]. The components of displacement
(u,, ug, u;) in the radial, transverse, and axial directions respectively are

U, = 4L i {And (Br)/B*r + B, J(Br)/ B+ C,J (ar)/o} cos nf explikz — wt)]

+-— Y {D,, E,, F,} sin nf expli(kz — wt)},
4.“ n=0

i {AJ(Br)/ B+ B,nd (Br)/B*r + Cund (ar)/a’r} sin nf expli(kz — wt)]

@0

1
+— Y {Dy, E,, F,} cos n0 exp[i(kz — wt)],
4# n=0

u, = i { = B,iJ (Br)/k + C,ikJ (ar)/a*} cos nf explitkz — wt)]

1
4y

1 £e)
+@ Y. {E,, F,} sin nf expli(kz — wt)]. 1)
n=0

The notation {D,, E,, F,} is used to indicate that this expression is the same as that
in the immediately precedmg braces with D,, E,, and F,, replacing A4,, B, and C,
respectively. In subsequent equations the factor expli(kz—wt)] will be omitted. The
components of stress are

3

Q
|

v =2 (A nlBrJy(Br)—J(Br))/(Br)? + By J(pr)+ Cox [J(ar) — (K — 1)J (ar)]} cos nf

n=0

&

+ 3 " (D, E,, F,} sin n,
o = 3 AT B+ Q%07 BB~ BB ()= L (B B
C.3n[ordfor)— J (or)]/(ar)?) sin n0 — 20 {D,, E,, F,} cos nf,
G = 3 {Adbiknd (Br)/ B — B4i(F — k2)(Brykp

n=0

+C,3ikJ (ar)/a} cos n@+ Y, {D,, E,, F,} sin nb,

n=0
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Go = Y.~ AbnlBrd(Br)—J(BriY/(Bri® + B [BrJ i pr)—nd (Bl (Bry?

n=9

— CAar)+ KJ (@]} cosn0+ Y {D,. E,, F,) sin 0,
n=0

Z{ AL ik (Br)/B+ B4 i(B2 —~ k*)nd (Br)/kp*r

Ps

— Cziknd (ar)/o*r} sinn@— Y (D, E,, F,} cosné,

n=0

Gz =

n

HBJAPr)— C,[K — 1 +(k/o)* 1] fowr)} cos nf+ i HE,, F,} sinng, 2)
n=0

1y
irags

where K = 1(B%—k?)/a>.
In the case of a circular bar, with its axis coinciding with the z-axis, the boundary

conditions
6,=0643=0,=0 at r=R

(where R is the radius of the bar) are satisfied by the above solutions for each value of n
separately. When n = 0, the solutions involving the coefficients B, and C, represent
longitudinal waves, and those involving D, represent torsional waves. When n > 0 the
boundary conditions are satisfied by solutions involving either the coefficients 4,, B,, and
C,, or the coefficients D,, E,, and F,; one set of solutions being obtained from the other
by rotating the axes n/n radians about the z-axis.

For noncircular bars the stresses and displacements are still given by equations (1)
and (2), and in general we must now retain all the terms in the infinite series to satisfy the
boundary conditions. In order to impose the boundary conditions we require the normal
and tangential components of stress on the boundary, and for a rectangular bar these are
simply cartesian components. Transforming (1) and (2) we find that the cartesian
components of displacement are

; {Aljcns 1(B)+jcar(BYY/ B+ Bi[—jcns 1(B)+ica- (BB

':1"“

. . 1 g :
+Cn[ _.]Cn+ l(a) +.]Cn— 1(@)]/(1} + ; Z {Dm Em Fn9 15}9
n=0Q

s

1 &
= Y {Auljsns 1(B) = jsu= 1B/ B— BuLjsns 1(B) +jsu— 1 (B/B

n=

)

*‘“C"[jsn_(_ I(a) +jsﬂ— 1(&)]/&} "i Z {Dm Em Fn’ jC},

n=0

% 5: { = Bijc{BVk+C, ijcn(a}/az‘\—{— i F,, js} (3)
0 =
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and the cartesian components of stress are

Gue= ¥ (Adl=icrs o) +ice-AB+ Bul ey sB)+ico-oP)~ 2P

+ C"[jC"+2(C1)+jC,,_2(CX)— 2(2K_ 1)}(:,‘((1)]} + Z {Dm En, Fn’ jS},

n=0

Oy = i {AuLjsn+2(B)=Jsn-2(B)) + Bl jsn+ 2(B)— jsn—2(B)]
n=0

W

+ Cn[jsn+2(a) “jsn—z(“)] - Z {Dns Em Fm jc}a

n=0
O = 3 AALJcwe sB)+ca-(BNKIB+ Bolicys sB) =l (BN~ B
+ Cn[—jcn+l(a) +jcn— 1((!)]2!’(/&} + io {Dns Ens Fm jS},

Tyy = i {AuLjcns2(B)—jcn- 2B = Baljcn s 2B) + jCn— (B + 2fca(B)]

—Cljns 2@ +icn- @)+ 20K = Djcoll} + 3 (Do Ens For s},
n=90

" (ALiSns 1(B)+iSn— (BVK/B+ BLisws 1(B)+su- (BB — K2V B

Q
i
MR

yz

n=0

—C [_]S"+ 1((1)+]Sn 1 ot)]Zlk/a Z {Dns Ena Fm ]C}

i B, jc,(B)— CalK — 1+ (k/a)*] jea(o)} + ELO {E,, F,, js}, 4)

O-ZZ

where
jsula) = J,(ar) sin nd, Jsu(B) = J (Br)sin uf.
jeu(@) = J (ar) cos nb, jelB) = J (Br) cos né.

In equations (3) and (4) in addition to the convention adopted in (1) and (2) the occurrence
of jc in the braces means that everywhere js occurs in the preceding braces it is to be replaced
by je, and vice versa. Note that the coefficients 4,,..., F, occurring in (3) and (4) are
one-eighth of the corresponding coefficients in (1) and (2).

For an infinite rectangular bar with its axis coinciding with the z-axis and its boundaries
formed by the planes x = +a, y = +b, (see figure 1) the solutions (3) and (4) represent
harmonic waves travelling along the z-axis provided they can be made to satisfy the
boundary conditions

_.|_
=

Gyy =0y, =0,,=0 on (r = asect),

g Oy =0,=0 on y==+b, (r = bcosec 8).

yy
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F1G. 1. Coordinate system for a rectangular cross-section.

These boundary conditions can be satisfied approximately if we make the stresses zero at
a discrete set of points on the boundary (called collocation points).

For bars with at least one axial plane of symmetry the series (3) and (4) separate into
two sets of solutions; one involves only the terms with coefficients A4,, B, and C,, the
other involves the terms with coefficients D,, E, and F,. Suppose we retain N terms in one
of these solutions, then the truncated series involve 3N arbitrary coefficients. If we also
chose N collocation points, and set each of the three truncated series representing the
normal and tangential components of stress at each point equal to zero, we obtain 3N
homogeneous, linear equations for the 3N unknown coefficients. This set of equations has
a nontrivial solution if and only if its determinant is equal to zero. We will call this
determinant the collocation determinant.

If the ratio of the side lengths of the cross-section and the value of Poisson’s ratio are
given then the elements of the collocation determinant depend only on the parameters
¢/c, and ka. The real values of ¢/c, and ka for which the determinant is zero give the phase
velocity and frequency of waves that propagate along the bar without attenuation. Before
discussing the numerical procedure and results we examine the collocation determinant
in more detail.

3. CONSTRUCTION OF THE COLLOCATION DETERMINANT
FOR EACH MODE

(a) Rectangular bar

Because of the twofold symmetry of the rectangular cross-section, the solutions (3)
and (4) separate into four infinite series each of which is capable of satisfying the boundary
conditions. The four solutions correspond to the four modes of wave propagation in a
rectangular bar.

(i) Longitudinal (L) mode. We obtain the solution that represents longitudinal waves by
considering the series of terms involving the coefficients 4,, B,, and C, with n even. This
solution gives displacements and stresses that are symmetrical with respect to both the
x- and the y-axis. Thus for the displacements we have

ul—60,r)=ufl,r)= —uln—0,r)

—u (—0,r) = uf0,r) = ufn-0,r),

u—0,r) = u0,r) = uln—0,r), (5a)
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and for the stresses we have

0(—0,1) = 0,(0,1) = 0, (n—0,r),
—0,(=0,r)=0,(0,r) = —0, (n—-0,r),

Oe(—0,r) = 0..(0,7) = —0o.(n—0,1)

o,(—=0,r)=a,(0,r) = a,(n—0,r),
~0,,(=0,r) = 0,,(0,r) = 6,,(n—0,r),

G.(—0,1r) = 6,,(0,r) = 7,,(n—0,7r). (5b)

If we satisfy the boundary conditions on a quarter of the boundary (say that part of
the boundary in the positive quadrant of the xy-plane) then equations (5b) insure us that
the boundary conditions are satisfied on the rest of the boundary. Thus it is only necessary
to choose collocation points on one quarter of the boundary. (This is also true for the
other three modes.)

Since the terms involving the coefficients A4, are all identically zero the first column
of the collocation determinant is zero. We overcome this difficulty by choosing the
intersection of the boundary and the x-axis (or the y-axis), where ¢, = 0, as a collocation
point. This introduces a zero row into the determinant and if the zero row and column
are deleted the reduced collocation determinant is nontrivial.

(i1) Torsional (T) mode. For the series of terms involving D,, E, and F, with n even, the
symmetry relations are obtained by reversing the signs on the first and third terms in
equations (5). These stresses and displacements are asymmetrical with respect to the x- and
y-axis, and correspond to a shearing deformation of the bar. This solution represents
waves propagating in the torsional mode.

Since all the terms involving the coefficients E, and F, are zero, this collocation
determinant has two zero columns. By choosing one of the collocation points at the
intersection of the boundary with the x-axis (or the y-axis), where 6., = 0 and ¢,, = 0,
we introduce two zero rows into the determinant, which when deleted with the zero
columns gives a nontrivial reduced determinant.

(iif) Bending (B) modes. Similarly, the series of terms involving the coefficients A4, B,, and
C, with n odd, give stresses and displacements that are symmetrical about the x-axis and
asymmetrical about the y-axis, and the series involving D,, E,, and F,, with n odd, give
stresses and displacements that are asymmetrical about the x-axis and symmetrical about
the y-axis. These solutions represent waves propagating in modes of bending about the
y-axis and the x-axis respectively (designated the B, and B, modes).

The collocation determinants for these cases have no identically zero columns, and
collocation points that would lead to identically zero rows must be avoided.

(b) Square bar

A square bar has four axial planes of symmetry and the even series that gave the
longitudinal and torsional modes for the rectangular bar separate to give four solutions:
longitudinal, torsional, and two screw modes. The odd series do not separate further, but
again give the two bending modes. Figure 2 shows, schematically, the distortion of the
cross-section for the six modes of wave propagation in a square bar.
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Terms involving Terms involving
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FI1G. 2. Summary of the modes of vibration of a square bar and the corresponding terms in the series
solutions.

(1) Longitudinal (L) and first screw (S,) mode. Consider the series of terms involving 4,, B,,
and C,, withn = 0,4,8,.... As well as the symmetry relations (5) we have the following
symmetry relations with respect to the diagonals of the cross-section:

With respect to the diagonal x = y,

u(n/2—0,r) = u/0,r),

u(n/2—0,r) = u,(0,r), (6a)
and
0, (n/2—0,1) = 0,(0,r),
0(M/2—0,1) = 0,.(0,7r),
0xn/2—0,1) = 0,.(0,7),
02(m/2—0,7) = 0,0, 1), (6b)
and similar relations with respect to the diagonal x = —y. Equations (5) and (6), taken

together, show that the stresses and displacements are symmetrical with respect to all four
planes of symmetry and this solution, therefore, represents longitudinal waves. If, now,
we satisfy the boundary conditions on one eighth of the boundary (say x = 4,0 < y < b)
equations (5) and (6) insure us that they are satisfied on the rest of the boundary.

For the series of terms involving 4,, B,, and C,, with n = 2,6, 10, ..., the symmetry
relations with respect to the diagonals are obtained by reversing the signs on the right hand
sides of equations (6). When these relations are considered with equations (5) we see that
the stresses and displacements are symmetrical with respect to the x- and y-axes and
asymmetrical with respect to the diagonals. This solution corresponds to a deformation
in which the bar is squeezed alternately in the direction of the x- and then the y-axis,
and is the first screw mode. Again it is only necessary to satisfy the boundary conditions
on one eighth of the boundary. (This is also true for the torsional and second screw mode.)
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(i) Torsional (T) and second screw (S,) modes. The series involving D,, E,, and F,, with
n=20,423,...,give stresses and displacements which are asymmetrical with respect to all
four planes of symmetry, while the series involving D,, E,, and F,, withn = 2,6,10,...,
give stresses and displacements which are asymmetrical with respect to the x- and y-axes,
and symmetrical with respect to the diagonals. The first of these solutions corresponds to
a deformation in which the cross-section undergoes a net rotational oscillation, and is
therefore the torsional mode; the second corresponds to a deformation in which the bar
is squeezed alternately in the direction of one diagonal and then the other, and is the
second screw mode.

(iii) Bending (B) mode. The collocation determinants for the bending modes in a square
bar are the same as those for the rectangular bar and collocation points must still be chosen
on one quarter of the boundary. However for a square bar the dispersion curves for the
B, and B, modes are indistinguishable, and these modes will simply be referred to as the
B mode of wave propagation.

4. NUMERICAL PROCEDURE AND ACCURACY

As stated in Section 2, once the values of Poisson’s ratio (v) and the ratio of the side
lengths of the cross-section (b/a) are fixed the value of the collocation determinant depends
only on ka and c/c,. The results given here are all for v = 0-3 with values of b/a ranging
from 1 to 2.

For a particular value of ka and a given number of equally spaced collocation points,
the value of c/c, that makes the determinant zero is calculated by iteration. (For the
square bar the initial values of ¢/c, used to start the iteration were taken from Nigro’s
results [4].) This procedure is repeated for increasing numbers of collocation points until
successive values of ¢/c, are in agreement to a suitable number of decimal places. The
ratios of the coefficients (4, B,, C,, or D,, E,, F,, as the case may be) are now calculated,
and from these the stresses and displacements (normalized with respect to the maximum
stress and displacement) at any point in the cross-section can be found. In particular, the
stresses at points on the boundary midway between the collocation points are calculated,
and their nearness to zero provides a further indication of the accuracy of the result.

(@) Square bar

Table 1 gives the numerical results for the first branches of the six modes of propagation
in a square bar. For 0 < ka < 5 eight collocation points (on one-eighth of the boundary)
are found to give ¢/c, accurate to four decimal places for the L, S!, T?, and S} branches,
and the stresses between the collocation points are in most cases less than o, x 1074,
where o,,,, is the maximum stress in the bar. In fact, four collocation points give c/c,
accurate to three decimal places, although some of the stresses at the intermediate points
are now as large as a,,,, x 10~2. Sixteen collocation points (on one quarter of the boundary)
are necessary to obtain the same accuracy for the B! branch. On the second branches of
these modes, for the same range of ka, the same number of, collocation points give ¢/c,
accurate to three decimal places. For larger values of ka, and higher order branches the
accuracy falls off rapidly unless a very large number of collocation points is used.

The reason for these limitations on the accuracy of the method is readily found. For
points on the L' branch with low values of ka the arguments of the Bessel functions in
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TaBLE 1. PHASE VELOCITY (’[(‘2 AS A FUNCTION OF k4 FOR THE FUNDAMENTAL BRANCHES OF THE DISPERSION
CURVES FOR A SQUARE BAR WITH v = (-3

efc,
ka
L Si T! S B! & B!
010 16120 0-0925
0-30 1-6080 0-2643
0-50 1-5996 09183 3-840 0-4058
075 i-5814 2-567 0-5382
1-00 1-5512 2-1646 09182 1-9680 06316
1-20 15150 1-8074 09179 16902 0-6864
1-40 1-4657 1-5640 09177 1-5066 07286
1-60 1-4048 1-3926 09175 1-3802 0-7614
1-80 1-3385 1-2694 09172 1-2902 07874
200 1-2743 11793 09169 1-2246 0-8081
220 12172 1-1127 09167 11754 08249
2:40 1-1687 1-0631 09163 1-1380 0-8385
2-60 1-1285 1-0258 09160 1-1089 0-8497
2:80 1-0956 09156 10861 0-8592
300 1-0688 0-9759 1-0677 0-8664
320 09594 1-0528 08731
340 1-029 09467 10406 0-8781
360 09368 1-0304 0-8830
380 09292 0-8868
400 0992 09232 0913 0-8893
500 0962 0-908 0-990 0-899
600 0948 0904 0909 0977 0902
7-00 0942 0-903 0-968 0-903
800 0938 0903 0907 0961 0903
9-00 0936 0903 0956
10:00 0934 0903 0905 0-952
12:00 0932 0905 0946
14-00 0-931 0905 0942
16-00 0931 0-940

equation (3) and (4) (taking the terms containing 4,, B,, C, with n = 0,4, 8, ...) are very
small and with increasing n, J, — 0, so that the first few terms in the series give a good
representation of the actual stress and displacement distributions {which are fairly simple).
When ka is large, the arguments of the Bessel functions are large and J, does not decrease
so rapidly with increasing »; the stress and displacement distributions are more complicated
and more terms must be retained in the series to give a good approximation. A similar
argument applies for the higher order branches, and for the other modes.

(b) Rectangular bar

Sixteen collocation points equally spaced on one-quarter of the boundary of the
rectangular bar for which b/a = 1-2 give results with the same accuracy as those discussed
above for the square bar. When b/a = 2, using the same spacing of collocation points,
we can calculate ¢/c, accurate to two decimal places for the first two branches and
0 < ka < 5. As b/a increases it is no longer appropriate to use the solutions (3) and (4)
in cylindrical polar coordinates with the collocation method. An investigation to find
a more appropriate solution of the elastic wave equations to use with the collocation
method for these cases is beyond the scope of the present work.
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5. RESULTS AND DISCUSSION

Although some results are obtained for all modes of wave propagation in rectangular
bars, most attention is given to the L and §; modes. As suggested by Kynch [2] the
equivoluminal waves of Lamé [9], which propagate with phase velocity ¢ = c,./2 at wave
numbers given by ka = nn/2 (n odd) for bars of width 2a, play an important role in clas-
sifying and comparing the branches of the dispersion curves for the L modes of various
bars. Mindlin and Fox [10] also found exact solutions of the elastic wave equations for
certain waves in rectangular bars with certain ratios of width to depth. Their solutions
give a discrete set of points on the dispersion curves, but except for the Lamé waves (which
are included in their solutions) these points appear to lie on higher order branches than
those obtained here.

(a) Longitudinal and first screw modes

(i) Square bar. Figure 3 shows the first two branches of the dispersion curves for the L
and S, modes. The L! and S} branches intersect, and at this value of ka waves given by
linear combinations of the L and S, mode solutions are possible. If we add two such solu-
tions of equal amplitude we can see from their symmetry relations that the S; mode

2-2
Poisson's ratio 0-3
Square bar
z.oL —— ~— — L' for a circular bar
of equal area to the
¢ square bar

Nigro branch 1

Nigro branch 2
Nigro branch 3

2 37/,

0 1-0 2-0 30 4-0 5-0
ka

FiG. 3. Dispersion curves for a square bar: branches L', L2, S}, and S?.

reinforces the stresses and displacements of the L mode on planes parallel to the yz-plane
(or the xz-plane) and exactly cancels them on planes parallel to the xz-plane (or the
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yz-plane). This combination solution, where stresses and displacements on planes parallel
to the xz-plane (or the yz-plane} are zero, corresponds to one of Lamé’s equivoluminal
waves and branches L' and S! therefore intersect at ka = r/2. Although the branches
L? and 5% do not intersect, some of the higher branches will intersect at ka = nn/2,
n=35,.... Because of the limitations of the collocation method discussed in the last
section these higher branches have not been obtained.

Using the simplest approximate displacements in conjunction with the variational
principle Kynch {2} found the two screw modes as well as the longitudinal and torsional
modes for square bars, and showed that the L' and S} branches intersect. Nigro [4] used
more comprehensive approximate displacements to obtain more accurate dispersion
curves for rectangular bars. The power series he used to represent the longitudinal and
torsional modes in rectangular bars also represent the screw modes for the square bar
if the sign of every second term is reversed. Thus, using these series for the square bar,
Nigro has identified all his results as either L or T modes, whereas some of them are
actually S, and S, modes respectively. The results that he has identified with the first
three branches of the L. mode are shown in Fig, 3, and we see that they must be reidentified
as follows : his branch one results belong to L' for ka < n/2 and to S} for ka > n/2; his
branch two results belong to S} for ka < /2 and to L' for ka > =/2; his third branch is
actually the branch S}. Nigro’s reidentified results are in excellent agreement with the
present results.

Also shown in Fig. 3 is the fundamental branch of the dispersion curves for longitudinal
waves in a circular bar with the same area as the square bar. This curve is very close to the
L! branch for the square bar, in agreement with the experimental results of Morse [3]
for brass bars.

Figure 4 shows the change in the distribution of «, and ¢, on the x (or y) axis of the

square bar cross-section as ka increases along the L' branch. When ka = 1, u, and o,
are maximum on the axis of the bar and decrease slightly towards the boundary. As ka
increases from 2 to 5 the distributions become zero (at approximately ka = 2-4) and then
negative at the boundary (taking u, and o, positive on the z-axis). As ka continues to
increase u, and o, become very small at the z-axis, increase to a positive maximum near
the boundary and then fall rapidly through zero to become large and negative on the
boundary. For ka == 16 the distributions resemble those for Rayleigh waves on the surface
of an elastic half-space {(cf. Kolsky [11]}.
(i) Rectangular bars. Lamé waves propagate in all bars of width 2a with wave numbers
given by ka = nn/2 (n odd) independently of the depth 2b, and the dispersion curves for
longitudinal waves in bars of equal width but different depths have common points.
For each bar there will also be Lamé waves associated with the depth which have frequencies
given by kb = nn/2 (i.e. ka = ann/2b), n odd.

Figure 5 shows the first two branches of the dispersion curves for longitudinal waves
in various rectangular bars of equal width and b/a > 1. The Lamé wave of lowest frequency
is the one for which ka = an/2b, and this point lies on the L' branch for each bar. As b/a
increases these branches are displaced further to the left in Fig. 5. The lowest frequency
Lamé wave associated with the width is the one for which ka = n/2, and this is the common
point of the second branches provided b/a < 3. If 3 < b/a < 5 the second Lamé wave
associated with the depth has a frequency given by ka = 3an/2b < 7/2. For such a bar
it seems reasonable to assume that the second branch will pass through this point and
that the third or higher order branch will pass through the common point ka = n/2.
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(Note that there may be other branches between those identified with the Lamé waves.)
As b/a increases more and more branches will lie between the fundamental and the branch
through the point ka = n/2, ¢/c, = /2. Because of the limitations of the collocation
method the largest value of b/a investigated was b/a = 2. However, in the limit b/a = o
we have an infinite flat plate of thickness 2a which can be treated analytically. (See for
example Morse [3).) The fundamental dispersion curve for symmetrical (longitudinal)
waves in a plate is also shown in Fig. §, and it is interesting that although this curve does
not exhibit cut-off it is grouped with the L? branches of the bars treated here.

Of course, if b/a < 1 the above situation is reversed, the first branches have a common
point at ka = 7/2, and the second branches are displaced to the right with decreasing
depth. Results for this case could be obtained from the present results by plotting kb on
the abscissa instead of ka.

Morse [3] obtained the first two branches for longitudinal modes in rectangular brass
bars, of equal widths 2a but various depths (b > a), experimentally. His results show all the
features shown in Fig. 5 (except for the screw mode branch S! for the square bar).

We have already shown that the longitudinal and first screw modes which are distinct
in a square bar couple to give only a longitudinal mode in a rectangular bar. We investigate
this coupling in a rectangular bar for which b/a = 1-2. Notice in Fig. 5 that the L' branch
for this one bar, lies close to the L! branch for the square bar for small values of ka, while
for large values of ka it lies close to the S} branch for the square bar. The opposite is true of
the L? branch. Kynch [2] also found this to be so, and showed that waves in a rectangular
bar corresponding to points on the L' branch are predominantly of longitudinal type at
low frequencies (ka < m/2) and predominantly of screw type at high frequencies (ka > 7/2),
the reverse being true for the second branch. Figure 6 shows the displacement of the boun-
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F1G. 6. Distortion of the boundary of the rectangular cross-section b/a = 1-2.
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dary of the rectangular cross-section for waves corresponding to points on the L' and L?
branches for two values of ka. For ka = 1 the L! branch wave produces a dilatational
distortion of the boundary, whereas the L? branch wave produces the screw type distortion
of the boundary. For ka = 6 the L' branch wave produces the screw type distortion and the
L? branch wave produces the dilatational distortion.

(b) Torsional and second screw modes

Figure 7 shows the T* and S} branches for a square bar and the T' and T? branches
for the rectangular bar for which b/a = 1-2. The T! branches lie close together as do the

2-0
Poisson’s ratio 03
- \ — e e Rectangular bor %-1~2
\ —e G QuGre  bar
1'9L O Nigro branch 1
\ 9 Nigro branch 2[ S9U0T® bor

Fic. 7. Dispersion curves for a rectangular bar: branches 7' and 77, and a square bar: branches
7Tt and S3.

T? and S} branches, and the effect of the coupling of the screw with the torsional mode
in the rectangular bar is seen to be slight compared with the corresponding effect for the
longitudinal and first screw modes. Nigro’s results for the first two torsional mode branches
for a square bar are also shown, and we see that his second branch is actually the screw
mode branch S;. The agreement with Nigro’s reidentified results is good, although his
T' branch has a minimum at ka = 8 (approximately) which is not found in the present
results (see Table 1) where ¢/c, decreases monotonically out as far as ka = 14.

(c) Bending modes

Figure 8 shows the first two branches for bending waves in a square bar and the
rectangular bar for which b/a = 1-2. Nigro’s results for the square bar are also shown, and
again the agreement with them is excelient.
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6. COMPARISON WITH APPROXIMATE THEORIES

One of the purposes of seeking solutions of the exact equations of motion for elastic
bars by numerical methods, is to aid in assessing the accuracy of results obtained from
various approximate theories. Here we confine our attention to an assessment of two recent
theories due to Volterra [12] and Medick {13, 14] by comparing longitudinal wave disper-
sion curves obtained using these theories with those obtained using the collocation method.
Earlier approximate theories have been discussed in detail in the review paper by Green [1].

Volterra and Medick both use approximate displacement functions in conjunction
with Hamilton’s principle to satisfy the field equations and boundary conditions approx-
tmately. Volterra uses simple power series in the lateral coordinates x and y to represent
displacements, whereas Medick uses a suitably truncated series in products of Legendre
polynomials in x and y. Both theories lead eventually to third order characteristic
determinants that give the dispersion relations for longitudinal waves. Medick’s (1, 1)
theory, appropriate for bars where b/a is near one, leads to a characteristic determinant
{equation (56) of reference [13]) which in the notation of this paper is

Ll [
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Volterra’s dispersion relation for longitudinal waves (equation (61) of reference [12])
in determinental form is obtained from (7) by replacing the diagonal terms D;; by

o =3( o) (-375) ()]
e (45
ot T

The factors « and K that appear in (7) and (8) are adjustment parameters introduced
into the strain energy integral in Hamilton’s principle to partially compensate for the
restricted dependence of the strain variables on the lateral coordinates x and y (cf. equation
(8) of reference [12] and equation (44) of reference [13]). Medick sets « = 1 so that ‘“‘the
predictions of the (1, 1) theory coincide with those of the analogous plate theory for
degenerate cross-sections, i.e. the infinite plate and the narrow strip”. [13]. We see from (7)
that the limiting phase velocities for very small or very large wave numbers are independent
of o and have the values, for the three branches of the dispersion curves defined by (7), of

¢ = ¢g, 00, 00, for ka<1l,
C=Cy,Cy,Cy5 for ka > 1,

where ¢, is the bar velocity.
Volterra sets the factor K = (c,/c,)’, where c; is the Rayleigh surface wave velocity [11].
With this choice of K the limiting values of phase velocity for large wave numbers are

€ = Cg, Csy Cy ; ka > 1,
and for small wave numbers the limiting value of phase velocity is independent of K :
¢ = Cg, 00, 00 ka < 1.

Figure 9 shows the lowest two branches of the dispersion curves for a square bar
calculated from the Medick and Volterra determinants (for v = 03, = 1 and K = 0-8601)
compared with branches L! and S! obtained by the collocation method. Branches L!
and S} obtained from Medick’s determinant intersect at the correct phase velocity
(¢ = ¢,+4/2) but the corresponding value of ka = n/,/2 is too large, and of course the
asymptotic value of phase velocity is c, rather than c,. Branch L' obtained from the
Volterra determinant is in better agreement with the collocation result but the Si branch
is not, and their intersection is in error in both coordinates. The reason Volterra’s L!
branch is a better fit than Medick’s is probably because his polynomial approximation to
the displacement is of a higher degree than that of Medick’s truncated Legendre polynomial
in his (1, 1) theory.

The accuracy of the dispersion curves obtained from Medick’s determinant can be
considerably improved by choosing a to make the Lamé wave roots (c/c, = /2; ka,
kb = n/2) satisfy the determinant. This is accomplished by setting « = /2. Figure 10
shows the results with this choice of « for bars for which b/a = 1-0, 1-4 and 1-8, plotted
with the corresponding results obtained by the collocation method.
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Of course both approximate theories give dispersion curves that have the correct
general form, and because of the comparative simplicity of the dispersion relations they are
useful for making qualitative predictions of the effects of dispersion in rectangular bars
even if the quantitative results are in error.
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A6cTpakT—MHCIIONb3YeTCs METOA KOJIIOKALMH LUIS OTIPE/IENICHHSt KPUMBLIX IMCIEPCHH NIPH pachpelesieHuu
BOJIH B GECKOHEUHBIX NMPAMOYIONBHBIX CTEPXHsX. [ToNy4aroTca TIUATENBHBIE PE3Y/ILTAThI, CBEPX OTPaH-
MYEHOTO NPEAENA YMC/IA BOJIH, JJIA NEPBLIX JBYX BETBEH KPHUBLIX QUCHEPCHM AJIS Pa3HbIX BUAOB PacIipe-
neneHus. OnpenensoTcs BUHTOBBIE BuAsl KuHya mis kBagpaTtHoro crepxus. Mccnenyercs, HoapoGHO,
B3aUMOJEHCTBUE MEX/y OJHMM U3 BUHTOBBIX BHJIOB M NMPOAONBbHOM opmoit. Hakouell, 3TH pe3yibTaTsl
HCIIOJIb3YIOTCA /IS OLCHKH TILATESIBHOCTH JIBYX, BBIBEACHHbIX B OC/IEAHEE BPEMsl, TIPAGIMKBHHEIX TEOPHi
BOJIH.



